Problem 1
Find the number of integer values of k in the closed interval [ − 500 , 500 ] for which the equation
log ( k x ) = 2 log ( x + 2 )
has exactly one real solution.
log ( k x ) = 2 log ( x + 2 ) ⟺ x > − 2 ∧ log ( k x ) = log (( x + 2 ) 2 ) ⟺ x > − 2 ∧ k x > 0 ∧ k x = ( x + 2 ) 2 ⟺ x > − 2 ∧ k x > 0 ∧ x 2 + ( 4 − k ) x + 4 = 0
Let f ( x ) = x 2 + ( 4 − k ) x + 4 = ( x − x 1 ) ( x − x 2 ) , where x 1 = 2 k − 4 − k ( k − 8 ) , x 2 = 2 k − 4 + k ( k − 8 ) , then
log ( k x ) = 2 log ( x + 2 ) ⟺ x > − 2 ∧ k x > 0 ∧ f ( x ) = 0 ⟺ x > − 2 ∧ k x > 0 ∧ ( x = x 1 ∨ x = x 2 ) ⟹ k < 0 ∨ k ≥ 8
Applying Vieta’s Formulas yields
x 1 + x 2 = k − 4 ∧ x 1 x 2 = 4
If k < 0 ,
x 1 + x 2 = k − 4 ∧ x 1 x 2 = 4 ⟹ x 1 + x 2 < 0 ∧ x 1 x 2 > 0 ⟺ x 1 < 0 ∧ x 2 < 0
Since f ′′ ( x ) = 2 > 0 ∧ f ( − 2 ) = 2 k < 0 , it follows that
x 1 < − 2 ∧ x 2 > − 2
Therefore,
log ( k x ) = 2 log ( x + 2 ) ⟺ x = x 2
Therefore, if k < 0 , log ( k x ) = 2 log ( x + 2 ) always has exactly one real solution.
If k ≥ 8 ,
x 1 + x 2 = k − 4 ∧ x 1 x 2 = 4 ⟹ x 1 + x 2 > 0 ∧ x 1 x 2 > 0 ⟺ x 1 > 0 ∧ x 2 > 0
Therefore,
log ( k x ) = 2 log ( x + 2 ) ⟺ x = x 1 ∨ x = x 2
Therefore, if k ≥ 8 , log ( k x ) = 2 log ( x + 2 ) has exactly one real solution iff
x 1 = x 2 ⟺ k ( k − 8 ) = 0 ⟺ k = 8
Therefore, log ( k x ) = 2 log ( x + 2 ) has exactly one real solution iff
k < 0 ∨ k = 8
There are 501 integer values of k in [ − 500 , 500 ] such that k < 0 ∨ k = 8 .
Problem 2
Real numbers x and y with x , y > 1 satisfy log x ( y x ) = log y ( x 4 y ) = 10 . What is the value of x y ?
log x ( y x ) log y ( x 4 y ) = x log x ( y ) ⋅ 4 y log y ( x ) = 4 x y
Therefore,
4 x y = 100
4 x y = 100 ⟺ x y = 25
Problem 3
Let x , y and z be positive real numbers that satisfy the following system of equations:
log 2 ( yz x ) = 2 1 , log 2 ( x z y ) = 3 1 , log 2 ( x y z ) = 4 1
Then the value of log 2 ( x 4 y 3 z 2 ) is n m where m and n are relatively prime positive integers. Find m + n .
log 2 ( yz x ) = 2 1 ∧ log 2 ( x z y ) = 3 1 ∧ log 2 ( x y z ) = 4 1 ⟺ log 2 ( x ) − log 2 ( y ) − log 2 ( z ) = 2 1 ∧ log 2 ( y ) − log 2 ( x ) − log 2 ( z ) = 3 1 ∧ log 2 ( z ) − log 2 ( x ) − log 2 ( y ) = 4 1 ⟺ log 2 ( x ) = − 24 7 ∧ log 2 ( y ) = − 8 3 ∧ log 2 ( z ) = − 12 5
Therefore,
log 2 ( x 4 y 3 z 2 ) = ∣ 4 log 2 ( x ) + 3 log 2 ( y ) + 2 log ( z ) ∣ = 8 25
Therefore, m + n = 33 .
Problem 4
Let a > 1 and x > 1 satisfy
log a ( log a ( log a ( 2 )) + log a ( 2 ) − 128 ) = 128 ∧ log a ( log a ( x )) = 256
Find the reminder when x is divided by 1000 .
log a ( log a ( log a ( 2 )) + log a ( 24 ) − 128 ) = 128 ⟺ log a ( 24 log a ( 2 )) = 128 + a 128 ⟺ log a ( 2 24 ) = a 128 a a 128 ⟺ 2 24 = ( a a 128 ) a a 128 ⟺ a a 128 = 2 3 ⟺ a = 2 64 3
Therefore,
log a ( log a ( x )) = 256 ⟺ x = a a 256 ⟺ x = 2 192 ⟹ x ≡ 896 ( mod 1000 )
Problem 5
Let x , y and z be real numbers satisfying the system
log 2 ( x yz − 3 + log 5 ( x )) = 5 log 3 ( x yz − 3 + log 5 ( y )) = 4 log 4 ( x yz − 3 + log 5 ( z )) = 4
Find the value of ∣ log 5 ( x ) ∣ + ∣ log 5 ( y ) ∣ + ∣ log 5 ( z ) ∣ .
log 2 ( x yz − 3 + log 5 ( x )) = 5 ∧ log 3 ( x yz − 3 + log 5 ( y )) = 4 ∧ log 4 ( x yz − 3 + log 5 ( z )) = 4 ⟺ x yz + log 5 ( x ) = 35 ∧ x yz + log 5 ( y ) = 84 ∧ x yz + log 5 ( z ) = 259 ⟹ 3 x yz + log 5 ( x yz ) = 378 ⟺ x yz = 125
Therefore,
x yz + log 5 ( x ) = 35 ⟺ log 5 ( x ) = − 90
x yz + log 5 ( y ) = 84 ⟺ log 5 ( y ) = − 41
x yz + log 5 ( z ) = 259 ⟺ log 5 ( z ) = 134
Therefore,
∣ log 5 ( x ) ∣ + ∣ log 5 ( y ) ∣ + ∣ log 5 ( z ) ∣ = 265
Problem 6
Quadratic polynomials P ( x ) and Q ( x ) have leading coefficients of 2 and − 2 , respectively. The graphs of both polynomials pass through the two points ( 16 , 54 ) and ( 20 , 53 ) . Find P ( 0 ) + Q ( 0 ) .
Let P ( x ) = 2 x 2 + b P x + c P , then
P ( 16 ) = 54 ∧ P ( 20 ) = 53 ⟺ 512 + 16 b P + c P = 54 ∧ 800 + 20 b P + c P = 53 ⟺ b P = − 4 289 ∧ c P = 698
Therefore,
P ( x ) = 2 x 2 − 4 289 x + 698
Let Q ( x ) = − 2 x 2 + b Q x + c Q , then
Q ( 16 ) = 54 ∧ Q ( 20 ) = 53 ⟺ − 512 + 16 b Q + c Q = 54 ∧ − 800 + 20 b Q + c Q = 53 ⟺ b Q = 4 287 ∧ c Q = − 582
Therefore,
Q ( x ) = − 2 x 2 + 4 287 x − 582
Therefore,
P ( 0 ) + Q ( 0 ) = 698 − 582 = 116
Problem 7
For certain real numbers a , b , and c , the polynomial
g ( x ) = x 3 + a x 2 + x + 10
has three distinct roots, and each root of g ( x ) is also a root of the polynomial
f ( x ) = x 4 + x 3 + b x 2 + 100 x + c
Let x 0 be the additional root of f ( x ) , then
f ( x ) = ( x − x 0 ) g ( x ) = ( x − x 0 ) ( x 3 + a x 2 + x + 10 ) = x 4 + ( a − x 0 ) x 3 + ( 1 − a x 0 ) x 2 + ( 10 − x 0 ) x − 10 x 0
Therefore,
a − x 0 = 1 ∧ 1 − a x 0 = b ∧ 10 − x 0 = 100 ∧ − 10 x 0 = c
a − x 0 = 1 ∧ 1 − a x 0 = b ∧ 10 − x 0 = 100 ∧ − 10 x 0 = c ⟺ x 0 = − 90 ∧ a = − 89 ∧ b = − 8009 ∧ c = 900
Therefore,
f ( x ) = x 4 + x 3 − 8009 x 2 + 100 x + 900
Therefore, f ( 1 ) = − 7007 .
Problem 8
There are nonzero integers a , b , r and s such that the complex number r + s i is a zero of the polynomial P ( x ) = x 3 − a x 2 + b x − 65 . For each possible combination of a and b , let ρ a , b be the sum of the zeros of P ( x ) . Find the sum of the ρ a , b ‘s for all possible combinations of a and b .
It is easy to prove that the problem is equivalent to finding the sum of the sum of zeros of all P ( x ) ∈ R [ x ] such that
∃ r , s ∈ Z ∖ { 0 } , P ( r + s i ) = 0 ∧ ∃ a , b ∈ Z ∖ { 0 } , P ( x ) = x 3 − a x 2 + b x − 65
Since P ( x ) ∈ R [ x ] , it follows that
P ( r + s i ) = 0 ⟺ P ( r − s i ) = 0
Therefore,
∃ r , s ∈ Z ∖ { 0 } , P ( r + s i ) = 0 ⟺ ∃ r , s ∈ Z ∖ { 0 } , ∃ t ∈ R , P ( x ) = ( x − r + s i ) ( x − r − s i ) ( x − t ) ⟺ ∃ r , s ∈ Z ∖ { 0 } , ∃ t ∈ R , P ( x ) = x 3 − ( 2 r + t ) x 2 + ( r 2 + s 2 + 2 r t ) x − ( r 2 + s 2 ) t
Therefore,
∃ r , s ∈ Z ∖ { 0 } , P ( r + s i ) = 0 ∧ ∃ a , b ∈ Z ∖ { 0 } , P ( x ) = x 3 − a x 2 + b x − 65 ⟺ ∃ r , s ∈ Z ∖ { 0 } , ∃ t ∈ R , P ( x ) = x 3 − ( 2 r + t ) x 2 + ( r 2 + s 2 + 2 r t ) x − ( r 2 + s 2 ) t ∧ 2 r + t ∈ Z ∖ { 0 } ∧ r 2 + s 2 + 2 r t ∈ Z ∖ { 0 } ∧ ( r 2 + s 2 ) t = 65 ⟺ ∃ r , s ∈ Z ∖ { 0 } , ∃ t ∈ Z + , P ( x ) = x 3 − ( 2 r + t ) x 2 + ( r 2 + s 2 + 2 r t ) x − ( r 2 + s 2 ) t ∧ ( r 2 + s 2 ) t = 65 ⟺ ∃ ⟨ r , s , t ⟩ ∈ {⟨ 1 , 2 , 13 ⟩ , ⟨ 2 , 1 , 13 ⟩ , ⟨ − 1 , − 2 , 13 ⟩ , ⟨ − 2 , − 1 , 13 ⟩ , ⟨ 2 , 3 , 5 ⟩ , ⟨ 3 , 2 , 5 ⟩ , ⟨ − 2 , − 3 , 5 ⟩ , ⟨ − 3 , − 2 , 5 ⟩ , ⟨ 1 , 8 , 1 ⟩ , ⟨ 8 , 1 , 1 ⟩ , ⟨ − 1 , − 8 , 1 ⟩ , ⟨ − 8 , − 1 , 1 ⟩ ⟨ 4 , 7 , 1 ⟩ , ⟨ 7 , 4 , 1 ⟩ , ⟨ − 4 , − 7 , 1 ⟩ , ⟨ − 7 , − 4 , 1 ⟩} , P ( x ) = ( x − r + s i ) ( x − r − s i ) ( x − t )
Therefore, the sum of the sum of zeros of P ( x ) is 80 .
Problem 9
Find all polynomials f ( x ) with real coefficients such that f ( x 2 ) = f ( x ) 2 .
f ( x 2 ) = f ( x ) 2 ⟹ ∀ x ∈ C , f ( x 2 ) = 0 ⇔ f ( x ) 2 = 0 ⟺ ∀ x ∈ C , f ( x 2 ) = 0 ⇔ f ( x ) = 0
Therefore, if ∃ x ∈ C ∖ { − 1 , 0 , 1 } , f ( x ) = 0 , infinitely many distinct numbers
x , x 2 , x 4 , x 8 , …
are all zeros of f ( x ) . If ∃ x ∈ { 0 , 1 } , f ( x ) = 0 , infinitely many distinct numbers
e iπ , e 2 iπ , e 4 iπ , e 8 iπ , …
are all zeros of f ( x ) . Therefore,
f ( x 2 ) = f ( x ) 2 ⟹ f ( x ) = 0 ∨ ∀ x ∈ C ∖ { 0 } , f ( x ) = 0 ⟺ ∃ a ∈ R , ∃ n ∈ N , f ( x ) = a x n
Therefore,
f ( x 2 ) = f ( x ) 2 ⟺ ∃ a ∈ R , ∃ n ∈ N , f ( x ) = a x n ∧ a x 2 n = a 2 x 2 n ⟺ ∃ a ∈ R , ∃ n ∈ N , f ( x ) = a x n ∧ ( a = 0 ∨ a = 1 ) ⟺ f ( x ) = 0 ∨ ∃ n ∈ N , f ( x ) = x n
Problem 10
There exist two triples of real numbers ⟨ a , b , c ⟩ such that a − b 1 , b − c 1 , and c − a 1 are the roots to the cubic equation x 3 − 5 x 2 − 15 x + 3 listed in increasing order. Denote those ⟨ a 1 , b 1 , c 1 ⟩ and ⟨ a 2 , b 2 , c 2 ⟩ . If a 1 , b 1 and c 1 are the roots to monic cubic polynomial f and a 2 , b 2 and c 2 are the roots to monic cubic polynomial g , find f ( 0 ) 3 + g ( 0 ) 3 .
Applying Vieta’s Formulas yields
( a − b 1 ) ( b − c 1 ) ( c − a 1 ) = − 3
( a − b 1 ) ( b − c 1 ) ( c − a 1 ) = − 3 ⟺ ab c − a − b − c + a 1 + b 1 + c 1 − ab c 1 = − 3
Applying Vieta’s Formulas yields
a − b 1 + b − c 1 + c − a 1 = 5
Therefore,
ab c − ab c 1 = 2
ab c − ab c 1 = 2 ⟺ ( ab c ) 2 − 2 ab c − 1 = 0 ⟺ ab c = 1 − 2 ∨ ab c = 1 + 2
Applying Vieta’s Formulas yields
f ( 0 ) = − a 1 b 1 c 1 , g ( 0 ) = − a 2 b 2 c 2
It is easy to prove that f ( 0 ) = g ( 0 ) , therefore
f ( 0 ) 3 + g ( 0 ) 3 = ( − ( 1 − 2 ) ) 3 + ( − ( 1 + 2 ) ) 3 = − 14
Problem 11
Find all possible values of a such that the roots of polynomial x 3 − 6 x 2 + a x + a (denote by x 1 , x 2 , x 3 ) satisfy that ( x 1 − 3 ) 3 + ( x 2 − 3 ) 3 + ( x 3 − 3 ) 3 = 0 .
Applying Newton’s Identities yields
x 1 + x 2 + x 3 = 6
x 1 2 + x 2 2 + x 3 2 = 6 ( x 1 + x 2 + x 3 ) − 2 a = 36 − 2 a
x 1 3 + x 2 3 + x 3 3 = 6 ( x 1 2 + x 2 2 + x 3 2 ) − a ( x 1 + x 2 + x 3 ) − 3 a = 216 − 21 a
Therefore,
( x 1 − 3 ) 3 + ( x 2 − 3 ) 3 + ( x 3 − 3 ) 3 = x 1 3 + x 2 3 + x 3 3 − 9 ( x 1 2 + x 2 2 + x 3 2 ) + 27 ( x 1 + x 2 + x 3 ) − 81 = − 3 a − 27
Therefore,
( x 1 − 3 ) 3 + ( x 2 − 3 ) 3 + ( x 3 − 3 ) 3 = 0 ⟺ − 3 a − 27 = 0 ⟺ a = − 9
Problem 12
If r , s , t and u denote the roots of the polynomial f ( x ) = x 4 + 3 x 3 + 3 x + 2 , evaluate r 2 1 + s 2 1 + t 2 1 + u 2 1 .
Let
g ( x ) = x n f ( x − 1 ) = 2 x 4 + 3 x 3 + 3 x + 1
then, since
g ( x ) = x n f ( x − 1 ) = ( r x − 1 ) ( s x − 1 ) ( t x − 1 ) ( ux − 1 )
g ( x ) is a polynomial with roots r 1 , s 1 , t 1 and u 1 .
Applying Newton’s Identities yields
r 1 + s 1 + t 1 + u 1 = − 2 3
r 2 1 + s 2 1 + t 2 1 + u 2 1 = − 2 3 ( r 1 + s 1 + t 1 + u 1 ) = 4 9
Problem 13
Find all polynomials of degree less than 4 satisfying that f ( 0 ) = 1 , f ( 1 ) = 1 , f ( 2 ) = 5 , f ( 3 ) = 11 .
It is easy to prove the problem is equivalent to finding all polynomials f ( x ) such that
∃ a , b , c , d ∈ Z , f ( x ) = a x 3 + b x 2 + c x + d ∧ f ( 0 ) = 1 ∧ f ( 1 ) = 1 ∧ f ( 2 ) = 5 ∧ f ( 3 ) = 11
∃ a , b , c , d ∈ Z , f ( x ) = a x 3 + b x 2 + c x + d ∧ f ( 0 ) = 1 ∧ f ( 1 ) = 1 ∧ f ( 2 ) = 5 ∧ f ( 3 ) = 11 ⟺ ∃ a , b , c , d ∈ Z , f ( x ) = a x 3 + b x 2 + c x + d ∧ d = 1 ∧ a + b + c + d = 1 ∧ 8 a + 4 b + 2 c + d = 5 ∧ 27 a + 9 b + 3 c + d = 11 ⟺ ∃ a , b , c , d ∈ Z , f ( x ) = a x 3 + b x 2 + c x + d ∧ a = − 3 1 ∧ b = 3 ∧ c = − 3 8 ∧ d = 1 ⟺ f ( x ) = − 3 1 x 3 + 3 x 2 − 3 8 x + 1
Problem 14
What is the sum of the roots of z 12 = 64 that have a positive real part?
The roots of z 12 = 64 are
z k = 2 ( cos ( 6 kπ ) + i sin ( 6 kπ ) ) , k = 0 , 1 , … , 11
Since
cos ( 6 kπ ) > 0 ⟺ k ∈ { 0 , 1 , 2 , 10 , 11 }
It follows that the roots with a positive real part are z 0 , z 1 , z 2 , z 10 , z 11 .
k ∈ { 0 , 1 , 2 , 10 , 11 } ∑ z k = 2 k ∈ { 0 , 1 , 2 , 10 , 11 } ∑ cos ( 6 kπ ) + 2 i k ∈ { 0 , 1 , 2 , 10 , 11 } ∑ sin ( 6 kπ ) = 2 ( cos ( 0 ) + 2 cos ( 6 π ) + 2 cos ( 3 π ) ) = 2 2 + 6
Problem 15
The equation x 2 − 2 a x + a 2 − 4 a = 0 , a ∈ R has at least one root with magitude 3 . Find all possible values of a .
Let f ( x ) = x 2 − 2 a x + a 2 − 4 a , then it is easy to prove that the problem is equivalent to finding all possible values of a such that
∃ x ∈ C , ∣ x ∣ = 3 ∧ f ( x ) = 0
∃ x ∈ C , ∣ x ∣ = 3 ∧ f ( x ) = 0 ⟺ ( ∃ x ∈ R , ∣ x ∣ = 3 ∧ f ( x ) = 0 ) ∨ ( ∃ x ∈ C ∖ R , ∣ x ∣ = 3 ∧ f ( x ) = 0 )
∃ x ∈ R , ∣ x ∣ = 3 ∧ f ( x ) = 0 ⟺ ∃ x ∈ { − 3 , 3 } , f ( x ) = 0 ⟺ a 2 + 2 a + 9 = 0 ∨ a 2 − 10 a + 9 = 0 ⟺ a = 1 ∨ a = 9
Since f ( x ) ∈ R [ x ] , it follows that
f ( x ) = 0 ⟺ f ( x ) = 0
Therefore, applying Vieta’s Formulas yields
∃ x ∈ C ∖ R , ∣ x ∣ = 3 ∧ f ( x ) = 0 ⟺ ∃ x ∈ C ∖ R , ∣ x ∣ = 3 ∧ x + x = 2 a ∧ x x = a 2 − 4 a ⟺ ∃ x ∈ C ∖ R , ∣ x ∣ = 3 ∧ ℜ ( x ) = a ∧ ∣ x ∣ 2 = a 2 − 4 a ⟺ a 2 − 4 a = 9 ∧ ∃ x ∈ C ∖ R , ∣ x ∣ = 3 ∧ ℜ ( x ) = a ⟺ a 2 − 4 a − 9 = 0 ∧ − 3 ≤ a ≤ 3 ⟺ a = 2 − 13
Therefore,
∃ x ∈ C , ∣ x ∣ = 3 ∧ f ( x ) = 0 ⟺ a = 1 ∨ a = 9 ∨ a = 2 − 13
Problem 16
Let z = a + bi be the complex number with ∣ z ∣ = 5 and b > 0 such that the distance between ( 1 + 2 i ) z 3 and z 5 is maximized, and let z 4 = c + d i . Find c + d .
arg ∣ z ∣ = 5 ∧ ℑ ( z ) > 0 max ( 1 + 2 i ) z 3 − z 5 = arg ∣ z ∣ = 5 ∧ ℑ ( z ) > 0 max ∣ z ∣ 3 1 + 2 i − z 2 = arg ∣ z ∣ = 5 ∧ ℑ ( z ) > 0 max 1 + 2 i − z 2 = { − 25 ∣1 + 2 i ∣ 1 + 2 i } = { − 5 5 ( 1 + 2 i ) }
Therefore,
z = − 5 5 ( 1 + 2 i )
Therefore,
z 4 = ( − 5 5 ( 1 + 2 i ) ) 2 = − 375 + 500 i
Therefore, c + d = 125 .
Problem 17
Evaluate
n = 0 ∑ ∞ 2 n cos ( n θ )
where cos ( θ ) = 5 1 .
n = 0 ∑ ∞ 2 n cos ( n θ ) = n = 0 ∑ ∞ 2 n ℜ ( e in θ ) = ℜ ( n = 0 ∑ ∞ ( 2 e i θ ) n ) = 2ℜ ( 2 − e i θ 1 ) = 2ℜ ( ( 2 − cos ( θ ) ) 2 + sin ( θ ) 2 2 − cos ( θ ) + i sin ( θ ) ) = ( 2 − cos ( θ ) ) 2 + 1 − cos ( θ ) 2 4 − 2 cos ( θ ) = ( 2 − cos ( θ ) ) 2 + 1 − cos ( θ ) 2 4 − 2 cos ( θ ) = 7 6
Problem 18
Let ω = 1 be a 13 th root of unity. Find the remainder when ∏ k = 0 12 ( 2 − 2 ω k + ω 2 k ) is divided by 1000 .
k = 0 ∏ 12 ( 2 − 2 ω k + ω 2 k ) = x 13 − 1 = 0 ∏ ( x 2 − 2 x + 2 ) = x 13 − 1 = 0 ∏ y 2 − 2 y + 2 = 0 ∏ ( x − y ) = y 2 − 2 y + 2 = 0 ∏ x 13 − 1 = 0 ∏ ( y − x ) = y 2 − 2 y + 2 = 0 ∏ ( y 13 − 1 ) = (( 1 − i ) 13 − 1 ) (( 1 + i ) 13 − 1 ) = 8321
The remainder when 8321 is divided by 1000 is 321 .
Problem 19
The polynomial f ( z ) = a z 2018 + b z 2017 + c z 2016 has real coefficients not exceeding 2019 , and f ( 2 1 + 3 i ) = 2015 + 2019 3 i . Find the remainder when f ( 1 ) is divided by 1000 .
Since ( 2 1 + 3 i ) 6 = 1 , it follows that
f ( 2 1 + 3 i ) = a ( 2 1 + 3 i ) 2018 + b ( 2 1 + 3 i ) 2017 + c ( 2 1 + 3 i ) 2016 = a ( 2 − 1 + 3 i ) + b ( 2 1 + 3 i ) + c = − 2 a + 2 b + c + ( 2 a + 2 b ) 3 i
Therefore,
f ( 2 1 + 3 i ) = 2015 + 2019 3 i ⟺ − 2 a + 2 b + c + ( 2 a + 2 b ) 3 i = 2015 + 2019 3 i ⟺ − 2 a + 2 b + c = 2015 ∧ 2 a + 2 b = 2019 ⟺ a = 2019 ∧ b = 2019 ∧ c = 2015
Therefore,
f ( 1 ) = a + b + c = 6053
The remainder when 6053 is divided by 1000 is 53 .
Problem 20
Find the largest possible real part of ( 75 + 117 i ) z + z 96 + 144 i where z is a complex number with ∣ z ∣ = 4 .
∣ z ∣ = 4 max ℜ ( ( 75 + 117 i ) z + z 96 + 144 i ) = θ max ℜ (( 300 + 468 i ) e i θ + ( 24 + 36 i ) e − i θ ) = θ max ( 324 cos ( θ ) − 432 sin ( θ ))
Applying Cauchy-Schwarz Inequality yields
324 cos ( θ ) − 432 sin ( θ ) ≤ ( 32 4 2 + 43 2 2 ) ( cos ( θ ) 2 + sin ( θ ) 2 ) = 540
and when θ = − arctan ( 3 4 ) , 324 cos ( θ ) − 432 sin ( θ ) = 540 . Therefore,
θ max ( 324 cos ( θ ) − 432 sin ( θ )) = 540
Problem 21
Let a , b , c , d be real numbers such that b − d ≥ 5 and all zeros x 1 , x 2 , x 3 , x 4 of the polynomial
P ( x ) = x 4 + a x 3 + b x 2 + c x + d
are real. Find the smallest possible value of the product
( x 1 2 + 1 ) ( x 2 2 + 1 ) ( x 3 2 + 1 ) ( x 4 2 + 1 )
( x 1 2 + 1 ) ( x 2 2 + 1 ) ( x 3 2 + 1 ) ( x 4 2 + 1 ) = ( i − x 1 ) ( − i − x 1 ) ( i − x 2 ) ( − i − x 2 ) ( i − x 3 ) ( − i − x 3 ) ( i − x 4 ) ( − i − x 4 ) = P ( i ) P ( − i ) = ( b − d − 1 + ( a − c ) i ) ( b − d + 1 − ( a − c ) i ) = ( b − d − 1 ) 2 + ( a − c ) 2
Therefore, the smallest possible value of the product is 16 .
Problem 22
Let N be the number of complex numbers z with the properties that ∣ z ∣ = 1 and z 6 ! − z 5 ! is a real number. Find the remainder when N is divided by 1000 .
N = ∣ { z : z ∈ C ∧ ∣ z ∣ = 1 ∧ z 6 ! − z 5 ! ∈ R } ∣ = ∣ { θ : θ ∈ [ 0 , 2 π ) ∧ e 6 ! i θ − e 5 ! i θ ∈ R } ∣
e 6 ! i θ − e 5 ! i θ ∈ R ⟺ sin ( 6 ! θ ) − sin ( 5 ! θ ) = 0 ⟺ 2 cos ( 420 θ ) sin ( 300 θ ) = 0 ⟺ cos ( 420 θ ) = 0 ∨ sin ( 300 θ ) = 0 ⟺ ( ∃ n ∈ Z , θ = 840 ( 2 n + 1 ) π ) ∨ ( ∃ n ∈ Z , θ = 300 nπ )
Therefore,
N = { 840 1 π , 840 3 π , … , 840 1679 π } ∪ { 300 0 π , 300 1 π , … , 300 599 π } = ∣ { 1 , 3 , … , 1679 } ∣ + ∣ { 0 , 1 , … , 599 } ∣ = 1440
Therefore, the remainder when N is divided by 1000 is 440 .
Problem 23
Evaluate the following sums:
(a)
( 0 48 ) + ( 3 48 ) + ⋯ + ( 48 48 )
( 0 48 ) + ( 3 48 ) + ⋯ + ( 48 48 ) = n = 0 ∑ 48 ( n 48 ) [ 3 ∣ n ] = 3 1 n = 0 ∑ 48 ( n 48 ) k = 0 ∑ 2 ω 3 kn = 3 1 k = 0 ∑ 2 n = 0 ∑ 48 ( n 48 ) ( ω 3 k ) n = 3 1 k = 0 ∑ 2 ( 1 + ω 3 k ) 48 = 3 2 48 + ( 2 1 + 3 i ) 48 + ( 2 1 − 3 i ) 48 = 3 2 48 + 2
(b)
( 0 48 ) + ( 4 48 ) + ⋯ + ( 48 48 )
( 0 48 ) + ( 4 48 ) + ⋯ + ( 48 48 ) = n = 0 ∑ 48 ( n 48 ) [ 4 ∣ n ] = 4 1 n = 0 ∑ 48 ( n 48 ) k = 0 ∑ 3 ω 4 kn = 4 1 k = 0 ∑ 3 n = 0 ∑ 48 ( n 48 ) ( ω 4 k ) n = 4 1 k = 0 ∑ 3 ( 1 + ω 4 k ) 48 = 4 2 48 + ( 1 + i ) 48 + 0 48 + ( 1 − i ) 48 = 4 2 48 + 2 25