Manacher’s Algorithm is an algorithm that computes for a string of length in time and space, where
Algorithm 0
Applying the definition yields an algorithm that solves the problem in time and space.
std::vector d(n, 0);
for (int i = 0; i < n; i++) {
while (i - d[i] - 1 >= 0 && i + d[i] + 1 < n && s[i - d[i] - 1] == s[i + d[i] + 1]) {
d[i]++;
}
}
return d;Algorithm 1
Lemma
Proof
Based on Algorithm 0, maintaining and applying the lemma yield an algorithm that solves the problem in time and space.
std::vector<int> d(n);
for (int i = 0, l = 0, r = 0; i < n; i++) {
d[i] = i < r ? std::min(d[l + r - i - 1], r - i - 1) : 0;
while (i - d[i] - 1 >= 0 && i + d[i] + 1 < n && s[i - d[i] - 1] == s[i + d[i] + 1]) {
d[i]++;
}
if (i + d[i] + 1 > r) {
l = i - d[i], r = i + d[i] + 1;
}
}
return d;Proof
It is easy to prove that the upper bound of the total number of executions of
d[i]++;is